

1

Model Based System Engineering (MBSE)
For Accelerating Software Development Cycle

Manish Patil
Sujith Annamaneni

September 2015

2

Contents
1. Abstract .. 3

2. MBSE Overview .. 4

3. MBSE Development Cycle .. 5

4. Migration of Legacy code to MBSE .. 10

5. MBSE Frameworks.. 11

6. Benefits of MBSE Approach ... 14

7. Conclusion .. 16

8. References .. 16

9. About The Authors ... 17

About L&T Technology Services ... 18

3

1. Abstract

In today’s vehicles, electronics account for about 40% of the total cost with a high

emphasis placed on software and about 200 million lines of code which are

developed in close collaboration with Service Providers, Tier 1s and OEMs. In

today’s automotive vehicle development programs, the development teams are

placed globally, increasing the geographical diversity resulting in bigger challenges

to maintain and ensure the consistent software co-ordination with different

stakeholders. The main factors behind an increase in electronic content include

increasingly stringent environmental regulations, advanced safety features, better

drivability, increasing comfort and convenience, information and entertainment

systems etc.

In the recent survey by Embedded Market Forecasters (EMF) on embedded product

development it has been revealed that impediments in the software development

process are mainly responsible for more than 80% of design delays and associated

design complications. As the embedded systems getting more complex with

increasing emphasis on software functionalities, it is becoming difficult to maintain

quality, schedule and cost within budget with the traditional approaches of

software development. In order to meet this challenge, automotive companies are

moving towards a Model Based System Engineering (MBSE) approach.

This paper demonstrates the MBSE approach which plays a crucial role in the

Software Development Life Cycle (SDLC) towards early verification and validation of

the design resulting in reduced ambiguity and delays due to design iterations along

with back-to-back testing. The benefits accrued with this approach are: reduction in

software development time, effort taken and cost.

Keywords: Model Based System Engineering (MBSE), Software Development Life

Cycle (SDLC), ISO26262, Autosar

4

2. MBSE Overview

Model Based System Engineering (MBSE) is a paradigm shift in the software

development methodology from traditional document-based specifications, design

and manual coding with more towards the executable specifications in the form of

models from which automatic code and test cases can be generated in single

development environment. The following figure shows the transition approach to

MBSE.

Figure 1: Transition to MBSE

Model-based design can be invaluable in providing early design verification and a

true executable specification. MBSE approach can be adopted during the following

scenarios:

i. Complex Functionalities: An increasing functional complexity with

continuous improvements in features results in more complexity, posing a

challenge to maintain and enhance the functionalities without disturbing the

existing working behavior.

ii. Stricter Regulations: With the advent of demand towards ensuring stricter

regulations, safety constraints (ISO26262) and higher quality, MBSE

approach supports achievement of these objectives by providing back-to-

back testing and improving quality of software early in the development

cycle.

5

iii. Reduced Development Schedule and Cost: Due to increased competition

within the automotive OEMs, the time to market for new vehicles has

reduced drastically, impacting on the overall product development life cycle

with increasing impact to reduce the schedule and cost of vehicles.

iv. Early Prototyping: Expensive or impractical to build early prototypes or

proof-of-concept development resulting in design cycles that are more

predictable and give faster results.

3. MBSE Development Cycle

MBSE approach provides a design environment that enables developers to use a

model for data analysis, visualization, testing and validation. Once the model is

developed and tested, using auto-code generation method, software for the

production embedded design is automatically generated, thereby bringing

uniformity in design and code, reducing code development time which will result in

reducing overall costs as compared to the traditional development approach.

The MBSE SDLC is outlined in below figure:

Figure 2: MBSE SDLC

6

The below figure represents a typical MBSE development cycle for capturing system

level specifications (Plant Model), control algorithms (Control Model), auto-code

generation and verification/validation methodologies.

Model-In-the-Loop
(MIL) & Software-In-

Loop (SIL) Testing

Hardware-In-
the-Loop (HIL)

Testing Vehicle Testing

Auto-code

Plant Model Control Model

Interface

Figure 3: MBSE Development Cycle

The MBSE workflow includes the following steps:

i. Create an executable specification consisting of algorithms, system model,

and system level verification environment

ii. Verify the system model against functional requirements using simulation

iii. Algorithm and behavioral models are optimized and refined yielding a fully

tested specification

iv. Perform floating point to fixed point conversion

v. Incorporate AUTOSAR interface information within the model for AUTOSAR

compliant auto-code generation

vi. Incorporate ISO26262 functional safety information within the model

vii. Automatically generate production software for embedded processors

7

viii. Verify the auto-code against model specifications

The below figure outlines the detailed model based development cycle with step-

by-step approach.

Figure 4: Step-by-Step MBSE Approach

The MBSE approach is being adopted for the SDLC support towards standards and

guidelines-compliance during software development stages as outlined below:

i. Standards and Guidelines Compliance

In the Model based development, Model Advisor checks supports for the

verification of the model for conditions and configuration settings of various

standards as AUTOSAR, ISO26262, IEC61508, MAAB modeling guidelines and

MISRA-C compliance. It produces a report that lists all the sub-optimal conditions

and settings that is found and suggests better model configuration settings

wherever appropriate.

ii. AUTOSAR Compliance

8

Import and export of AUTOSAR Software Component descriptions and generation of

AUTOSAR production code can be achieved in model based design. Model based

design and auto-coding tools support AUTOSAR compliance using model

configuration settings rather than AUTOSAR-specific blocks. As a result, a single

Model can be used as a reference for simulation, rapid prototyping and production

code generation in both AUTOSAR and non-AUTOSAR environments.

iii. ISO26262 Compliance

The development of safety complaint systems within the automotive industry is

characterized by demonstrating compliance with ISO26262, a standard for road

vehicle functional safety. We can generate project-specific artifacts, including

traceability matrices covering requirements, models, and generated code. Project

and product-specific artifacts can be combined to produce needful documentation

for achieving ISO 26262 certification.

iv. Verification and Validation

a. In the Model Based Design approach, executable models can be tested and

the test information can be re-used and applied later for testing code.

b. Test cases can be automatically generated or easily adopted with the

changes and coverage can be taken forward.

c. Requirements-Based Testing, Decision, Condition, Modified Condition /

Decision coverage can be covered with Model-In-the-Loop (MIL), Software-

In-the-Loop (SIL), Processor-In-the-Loop (PIL) and Hardware-In-the-Loop

(HIL) testing methods.

v. Model Reusability

Model based development approach supports the creation of library blocks which

can be developed for commonly used functions and can be included in Simulink

library toolbox for re-use into different modules or features. Modification of library

block at one place will imply the changes in all the models using these blocks.

9

vi. Retention of Legacy Code

An important feature of model-based design approach is its ability to reuse existing

pre-tested and deployed code as a part of the model. In this way, existing

applications can be updated or enhanced without having to model the complete

design. The legacy code can be encapsulated in the model using S-function

providing the appropriate interfaces for inputs and outputs mapping. Thus ensuring

the unified development environment with integration of legacy code into model

based environment for verification of the algorithm behavior.

vii. Requirement Traceability

The model can be linked with requirements in DOORS, Word or Excel format and

traceability report can be generated directly from the model.

viii. Continuous Integration and Testing

The below figure explains the automated steps adopting MBSE with continuous

integration and testing framework using Jenkins.

Figure 5: MBSE in Continuous Integration and Testing Framework

The continuous integration framework is adopted in the Model Based Design. As

soon as the developer commits the changes to a subversion repository, continous

10

integration framework process is initiated. Jenkins server detects the changes in the

subversion repository and the pre-configured Jenkins job is triggerred

automatically. During the execution of Jenkins jobs, MBSE quality gates are verified

for the following scenarios:

a. Modelling Guidelines Check: In this stage, the modelling guildelines are

verified using Matlab for MAAB compliance and the modelling guidelines

compliance report is generated.

b. Interface Check: In this stage, the inputs and outputs of the signals are

compared in the Matlab model against the data dictionary and interface

check report is generated.

c. Auto-coding Check: In this stage, the auto-code generation is invoked

and verified for the successful code generation using defined

configuration.

d. Compilation: In this stage, the auto-code compilation is carried out and

checked for any errors.

e. Unit Testing: In this stage, the unit testing in MIL (Model-in-the-Loop)

and SIL (Software-in-the-Loop) environments is carried out against the

test cases. The tests are run in Matlab and Tessy environments and

reports are generated for the coverage based on statement (C0), branch

(C1) and MCDC configuration.

During the execution of the above stages, an email will be sent to the developer on

whether passed or failed, along with a link of the execution status for each stage for

a detailed report. For the errors reported, the developer performs an analysis and

rework for the reported issues. Then the changes are re-committed to the working

copy or subversion branch which triggers the Jenkins job and the process is

repeated.

4. Migration of Legacy code to MBSE

11

The below figure outlines the overall step-by-step approach for migration of legacy

code to MBSE along with intermediate quality gates towards modelling guidelines,

MIL and SIL testing methods.

Figure 6: Flowchart for Migrating Legacy Code to MBSE

5. MBSE Frameworks

We have extensively worked for the development of automation frameworks using

Matlab scripting language for the auto-code generation and MIL / SIL testing.

i. Auto-code Generation Framework:

This framework incorporates the following aspects:

a. Configuration settings for auto-code generation

b. Customized library block checking

c. Modelling Guidelines checker

d. Code Generation utilities using Embedded Coder

e. Interface checks between model and data dictionary to ensure correct usage

of memory, boundary values and data types

12

The below figure outlines a typical Auto-code Generation Framework:

Figure 7: Auto-code Generation Framework

ii. Unit Testing Framework:

This framework incorporates the following aspects:

a. Generation of automatic test vectors for boundary values and

equivalence testing in reference with the data dictionary

b. Creation of MIL and SIL test framework with incorporation of model and

auto-code under test automatically

c. Apply test scenarios automatically and validate the results of MIL and SIL

tests

d. Generation of model and code coverage reports

The below figure outlines the unit testing framework:

13

Figure 8: Unit Testing Framework

This framework supports:

a. Detection and reporting of violations between model and code with

respect to the interface requirements

b. Identification and reporting of the precision errors between model and

code

c. Detection and report of incompatible behavior between model and code

iii. HIL Testing Environment:

Hardware-in-the-loop (HIL) simulation is a technique that is used in the

development and test of complex real-time embedded systems. HIL simulation

provides an effective platform by ensuring complexity of the plant is under the

control of the test platform. The complexity of the plant under control is

included in test and development by adding a mathematical representation of

all related dynamic systems. These mathematical representations are referred

to as the “plant simulation”. The embedded system to be tested interacts with

this plant simulation. The below figure outlines a typical HIL testing environment

being incorporated in MBSE.

14

Figure 9: HIL Testing Environment

6. Benefits of MBSE Approach

Organizations that adopt Model-Based Design or approach realize their savings

range from 20-60%, when in comparison to traditional methods. The bulk of these

savings come from better requirement analysis combined with early and continuous

testing and verification. As requirements and designs are simulated using models,

defects are uncovered much earlier in the development process.

15

Figure 8: Model-Based Design shifts defect discovery to early

development phases

Source: Measuring Return on Investment of Model-Based Design By Joy Lin,

Aerospace Industry Marketing Manager, MathWorks

Model Based System Engineering technologies including simulation modeling, rapid

prototyping, hardware-in-the-loop testing and automatic code generation offer

better design results and considerable savings to OEM owing to the advantage of

early detection through simulation.

Additionally, MBSE creates a structure for software reuse that permits established

designs to be effectively and reliably upgraded in a more simplistic and cost

effective manner. Model-Based Design for embedded software development lowers

costs by identifying defects early in the development process and reduces the total

number of latent defects thereby helping companies deliver higher quality systems

at lower costs and in lesser time frames.

16

7. Conclusion

Model-based design offers developers a distinct advantage over traditional product

development techniques. The ability to perform design validation and verification at

the onset of a project as well as the ability to test system segments using rapid

prototyping and automatic code generation (production code) provides a distinct

advantage to the developer.

From a design and project management viewpoint, the ability to validate at

different points during the design cycle enables management to more accurately

forecast duration and costs. Model-based design also brings the concept of “design

re-use” into the design cycle creating a framework for future savings.

8. References

i. Jerry Krasner, “Model-Based Design and Beyond: Solutions for Today’s

Embedded Systems Requirements”, EMBEDDED MARKET FORECASTERS,

American Technology International. January

2004. www.mathworks.com/tagteam/17878_91218v00_Krasner_Report.pdf

ii. Measuring Return on Investment of Model-Based Design By Joy Lin,

Aerospace Industry Marketing Manager,

MathWorks, https://www.mathworks.com/solutions/model-based-

design/mbd-roi-video/Measuring_ROI_of_MBD.pdf

iii. Autosar. Automotive Open System Architecture, www.autosar.org

iv. MathWorks, www.mathworks.com

v. Road vehicles — Functional safety — Part 6: Product development at the

software level https://www.iso.org/obp/ui/#iso:std:iso:26262:-6:ed-1:v1:en

https://www.mathworks.com/solutions/model-based-design/mbd-roi-video/Measuring_ROI_of_MBD.pdf
https://www.mathworks.com/solutions/model-based-design/mbd-roi-video/Measuring_ROI_of_MBD.pdf
http://www.autosar.org/
http://www.mathworks.com/

17

9. About The Authors

Manish Patil

Manish Patil has 13 years of industry experience in the design, development and

validation of embedded systems majorly with automotive domain. He is currently

part of Transportation Business Unit in L&T Technology Services Limited focused on

Embedded Systems solutions in MBSE, ISO26262, Continuous Integration and

Software Development for the automotive industry.

Sujith Annamaneni

Sujith has 8+ years of industry experience in MBSE in the design, development and

validation of embedded systems majorly with automotive domain. He is currently

part of Transportation Business Unit in L&T Technology Services Limited focused on

MBSE solutions for the automotive industry.

18

About L&T Technology Services

L&T Technology Services is a wholly-owned subsidiary of Larsen & Toubro with a

focus on the Engineering Services space, partnering with a large number of Fortune

500 companies globally. We offer design and development solutions throughout the

entire product development chain across various industries such as Industrial

Products, Medical Devices, Automotive, Aerospace, Railways, Off-Highway &

Polymer, Commercial Vehicles, Telecom & Hi-Tech, and the Process Industry. The

company also offers solutions in the areas of Mechanical Engineering Services,

Embedded Systems & Engineering Application Software, Product Lifecycle

Management, Engineering Analytics, Power Electronics, and M2M and the Internet-

of-Things (IoT).

With a multi-disciplinary and multi-domain presence, we challenge ourselves every

day to help clients achieve a sustainable competitive advantage through value-

creating products, processes and services. Headquartered in India, with over 10,000

highly skilled professionals, 12 global delivery centers and operations in 35 locations

around the world, we constantly find flexible ways of working, tailored to our

assignments and customer needs.

For more information, visit us at www.lnttechservices.com

© 2015 L&T Technology Services. No part of this document may be modified, deleted or

expanded by any process or means without prior written permission from L&T Technology

Services.

http://www.lnttechservices.com/

	1. Abstract
	2. MBSE Overview
	3. MBSE Development Cycle
	4. Migration of Legacy code to MBSE
	5. MBSE Frameworks
	6. Benefits of MBSE Approach
	7. Conclusion
	8. References
	9. About The Authors
	About L&T Technology Services

