Skip to main content
LTTS

LTTS

Quick Links mini

  • Search
  • info@LTTS.com
  • English
  • 日本語
  • Israel
  • German
  • Contact
  • Engineering the change
  • Industry
    • Transportation
      • Aerospace
      • Automotive
      • Rail Transportation
      • Travel & Hospitality
      • Trucks & Off-Highway Vehicles
    • Industrial Products
      • Building Solutions
      • Lighting Engineering
      • Power electronics & drives
      • Renewable Energy
      • Test & Measurement
      • Power Generation & Transmission
    • Plant Engineering
      • CAPEX Project E/EPCM Services
      • Digital Engineering Services
      • Engineering Reapplication & Global Rollouts
      • Integrated Asset Management Services
      • Operational excellence
      • Plant sustenance & management
      • Regulatory compliance engineering
    • Semiconductors
      • IP Core Solutions
    • Media & Entertainment
      • Cable & Broadcasting
      • OTT
      • Rdk
      • Set-Top Boxes
      • Smart Home
    • Consumer Electronics
      • Consumer IoT
      • Enterprise Devices
      • Personal Devices
    • Healthcare
      • Healthcare Providers
      • Medical Devices
    • Telecommunications
      • 5G
      • SDN/NFV
      • Wireless Networks
      • Wireline Networks
    • Oil & Gas
      • Digitalization
      • Oil Field Equipment
      • Owners and Operators
    • Software Products
  • Services
    • Product Engineering
      • User Experience
      • Mechanical Design
        • CAE & CFD
        • CAx Automation
        • Integrated Design, Validation & Testing
      • Security
        • Security Monitoring
        • Security Solutions
        • Security Services
      • Software
        • Cloud Engineering
        • DevOps
        • Engineering Analytics
        • Immersive Experiences
        • Voice Innovations
      • Hardware
        • Embedded Systems
        • Wearables Engineering
        • Testing
        • Sustenance
      • VLSI
      • Testing & Validation
    • Manufacturing Engineering
      • PLM on Cloud
      • aspenONE on Cloud
      • Plant Design & Engineering
      • Digital Factory & Simulations
      • Line Expansion & Transfer
      • Frugal Product Design
      • Asset Care
      • Accelerated Operations
      • Manufacturing Automation
      • Agile Supply Chain
      • Content Engineering
    • Operations Engineering
      • Connected Service Support
      • Integrated Content Management
      • Intelligent Building Management
      • Sourcing & Procurement
    • Engineering Consultancy
      • Industry 4.0
      • Product Strategy
      • Security
      • Smart Factory
      • Sustainability
  • Solutions
    • FlyBoard®Advanced Digital Signage Solution
    • Connected Security Integrative Zero Trust Architecture
    • ESM Energy and Sustainability Manager
    • Cogmation Device Test Automation Framework
    • i-BEMSIntelligent Building Experience Management
    • UBIQWeise 2.0 Device to Cloud IoT Platform
    • AiKno™ Machine Learning, NLP & Vision Computing
    • Semiconductor IP For Security, Communication & Verification
    • nBOnnB-IoT Protocol Stack
    • Avertle®AI Predictive Maintenance Solution
    • ARC Asset Reliability Centre
    • CHEST-rAi™ AI Chest X-Ray Radiology Assist Suite
  • Insights
    • Blogs
      • 5G-Enabled Connected Products: Driving Next-Gen Enterprise Communications
      • Evolution of Data Pipelines
      • The Future of Television
      • Flyboard®: Shaping the Digital Signage Landscape of the Future
    • News
      • How L&T Technology Services cracked the talent code for cloud
      • Accelerated momentum seen at transportation clients: LTTS
      • In Conversation with Rajeev Gupta Chief Financial Officer, L&T Technology Services Ltd.
      • Healthcare vertical has brought in $27 millionin revenue, will nurture & grow it: LTTS MD
    • POV
      • Hidden Correlations Shaping the Future of European Enterprises
      • Solving the O-RAN Component Testing Conundrum
      • CX in the Digical Era: What Fortune 500 Companies are Doing About It
      • Re-imagining Cybersecurity through a Blockchain Lens
    • eBooks
      • The Art of Cyberwar
      • Digital Twin - The Future of Manufacturing
      • Digitalising Wind Energy Ecosystem
      • INDUSTRY 4.0: The Future Is Now
      • Digital Engineering Explained
      • Sustainability Engineering
  • Explore LTTS
    • About Us
    • Nearshore Centers
    • Testimonials
    • Events & Webinars
    • News & Media
    • Board of Directors
    • CSR
    • Accolades
    • Quality Management
    • Analysts
    • Careers
    • Investors
    • Media Kit
    • Resources
    • Alliances
    • Sustainability
  • Contact
 

Industrial Products

Furthering the Energy Efficiency Cause: Towards Smart Microgrids

 

Sustainability

Furthering the Energy Efficiency Cause: Towards Smart Microgrids

  1. Home
  2. Blogs
  3. Industry
  4. Furthering the Energy Efficiency Cause: Towards Smart Microgrids

Furthering the Energy Efficiency Cause: Towards Smart Microgrids

Furthering the Energy Efficiency Cause: Towards Smart Microgrids
Published on: 03 Jun, 2017
295 Views
1 comments
Share This Article:
  • Twitter
  • Facebook
  • Linked in
AI
Green Energy
Machine Learning
Microgrids
Net Zero Energy
Sustainability

Still a novelty in today’s utility sector, microgrids are slated to evolve into a fundamental building block of 21st century energy infrastructure. Conservation, self-sufficiency, and sustainability are the key drivers taking the case for microgrids further. To that effect, the US Green Buildings Council discusses the evolving zero net energy trend, which is central to the energy efficiency argument. Zero energy buildings are what could be envisioned as the zenith of energy efficiency – synergizing multiple disciplines to create self-powered sustainability. Tapping into renewable energy sources and adapting existing transmission and distribution systems to it seems like the obvious starting point. However, the zero energy home is more than just a ‘green’ building with solar panels. Material design excellence and superior HVAC systems in isolation cannot support the ultimate outcome of net zero energy bills. It needs to be supported by on-site power generation, storage, and distribution capabilities.

Microgrids: Creating an Island of Sustainability

This is where the buzz around microgrids starts making sense. Just like distributed computing revolutionized IT, microgrids can transform energy management. A localized grouping of energy sources and loads remains connected to the traditional macrogrid but is capable of decoupling and autonomously functioning, depending on defined conditions. Montgomery County, Maryland made the perfect test bed for this idea. Owing to the location’s inclement weather pattern, maintaining uninterrupted power supply posed a veritable challenge. In order to plug the gap, leading electrical engineering companies joined forces to deploy two microgrids exclusively serving the county’s public safety facilities. This system can automatically, or at will be disconnected from the main grid, continuing to operate at normal capacity for extended periods of time. By recycling waste heat from on-site power generation operations, it can generate up to 3.3 million kWh of solar energy, and 7.4 million kWh of combined heat and power each year. In all, this will diminish greenhouse gas emissions by 3,629 metric tons each year – equivalent to taking 767 conventional fuel cars off the road. The sheer generation capacity of Maryland microgrids is also said to be enough to fulfil the energy needs of 400 ‘non-smart’ homes a year. In a siloed residential network, this volume of energy is clearly in excess of what the maximum demand can be. It creates the opportunity to develop an elastic demand side management (DSM) subsystem to underscore the automated and distributed energy delivery network. Microgrids with integrated renewable energy sources (RES) and a control unit can dynamically allocate power based on evolving demand profiles. In the long run, this will reduce dependence on the macrogrid, culminating in an ‘island of sustainability’. Scheduling flexible loads through this model becomes a possibility, directly separating itself from the must-run loads tied to essential building functions like ventilation and refrigeration. In turn, this has a twofold effect; exponentially increasing distribution efficiency and improving energy storage management by using consumption data to determine when the connected battery array should charge or discharge.

Building a Connected Community: Banking on Sustainability

However, microgrids are only the medium through which home owners can enhance sustainability. The key to making energy efficient buildings smarter lies in connecting individual microgrids to create an ecosystem. This will enable homeowners to buy and sell excess energy produced within the network, implementing a producer-consumer (prosumer) model. Last year, an Australian company launched a residential electricity trading market, which will use blockchain technology to facilitate transactions. Other companies are looking to take this idea of a peer-to-peer energy trading network further by developing a decentralized, user-driven energy generation, distribution, and virtual trading platform. Other than the fact that microgrids are capable of laying the foundation for a free energy market, they are also the cornerstone of business models benefiting utility providers and users. Microgrid-as-a-service is already making waves, shielding ratepayer groups by allowing them to pay per pre-decided rates, while the onus of setting up and maintaining the infrastructure is on the supplier and distributor. From the customer’s perspective, this ensures reliability and negates the need to purchase and install expensive equipment.

Transitioning from Smart to Intelligent: Blending AI and Machine Learning

In a recent analysis, IDC identified a wide gap between residential technology applications and scenario-based services. The study indicates that R&D efforts must focus on emerging technologies like artificial intelligence (AI) and machine learning to improve infrastructure functionalities. The present infrastructure’s full potential can only be realized by integrating AI and machine learning capabilities to intuitively link multiple microgrids on individual building platforms. With AI, microgrids will go from being proactive in isolation to being proactive in conjunction with each other. Networked microgrids can monitor each other’s operation, predict potential downtime, and schedule backup in near real-time—rendering power outages a thing of the past. Machine learning can be harnessed to recognize consumption patterns, shaping household loads to enhance DSM and transforming microgrids into multi-objective intelligent energy management systems. This will use an artificial neural network to predict load demand and RES output, 24 hours in advance. By using fuzzy logic for battery scheduling, it will render legacy techniques like opportunity charging and heuristic flowchart (HF) battery management obsolete—taking us one step closer to a net zero energy future.

Authors

Amrut Joshi
Amrut Joshi
Senior Deputy General Manager

Related Blogs

Mridula Prakash
Science Based Targets for a Sustainable Future: How SBTi is Unlocking Business Value Across the World
21 Sep, 2021
Vishnu Jampangire
The Rise of the Sustainability Mindset in New Product Development
04 Jun, 2021
Dr. Keshab Panda
Accelerating Technology Advancements with the 4Es Framework
20 Apr, 2018
Leave a Comment
About text formats

Comments

 

Daryl

I think this is among the most important information for me. I am glad to be reading your article. The website style is great, and the other articles are also really nice.
  • Reply
Fri, 05/25/2018 - 08:10
View More Comments
View Less Comments
×Explore
  • Industry
  • Spotlight
  • ×
  • Automotive
  • Consumer Electronics
  • Industrial Engineering
  • Industrial Products
  • Lighting & Building Solutions
  • Media & Entertainment
  • Medical Devices
  • Oil & Gas
  • Plant Engineering
  • Power Electronics
  • Renewable Energy
  • Semiconductors
  • Telecommunications
  • Transportation
  • 5G
  • AR/VR
  • Artificial Intelligence
  • Autonomous Transport
  • Building Automation
  • Cloud engineering
  • Connected Healthcare
  • Cyber security
  • Data Mesh
  • Design Thinking
  • Digital Entertainment
  • Digital Media
  • Digital Twins
  • Embedded systems
  • ER&D Hackathon 2019
  • Image Processing
  • Industry 4.0
  • IoT Security
  • Machine Learning
  • Manufacturing Automation
  • Robotics
  • Simulation
  • Smart Factory
  • Smart Manufacturing
  • Smart Products
  • Smart Sourcing
  • Software Defined Networking
  • Sustainability
  • Telehealth
  • The New Normal
  • UI/UX
  • Wearables
  • Media
  • parent-company-logo.png
  • Need Help
  • Contact Us
  •  

Contact Us

By clicking Submit, you agree to the Privacy Policy

  • Engineering the change
  • Industry
    • Transportation
    • Industrial Products
    • Plant Engineering
    • Semiconductors
    • Media & Entertainment
    • Consumer Electronics
    • Healthcare
    • Telecommunications
    • Oil & Gas
    • Software Products
  • Services
    • Products
      • CAE & CFD
      • CAx Automation
      • Cloud Engineering
      • DevOps
      • Embedded Systems
      • Engineering Analytics
      • Immersive Experiences
      • Integrated Design, Validation & Testing
      • Security Monitoring
      • Security Solutions
      • Security Services
      • Sustenance
      • Testing
      • Testing & Validation
      • User Experience
      • VLSI
      • Voice Innovations
      • Wearables Engineering
    • Manufacturing
      • PLM on Cloud
      • aspenONE on Cloud
      • Plant Design & Engineering
      • Digital Factory & Simulations
      • Line Expansion & Transfer
      • Frugal Product Design
      • Asset Care
      • Accelerated Operations
      • Manufacturing Automation
      • Agile Supply Chain
      • Content Engineering
    • Operations
      • Connected Service Support
      • Integrated Content Management
      • Intelligent Building Management
      • Sourcing & Procurement
    • Consultancy
      • Industry 4.0
      • Product Strategy
      • Security
      • Smart Factory
      • Sustainability
  • Solutions
    • i-BEMS
    • Connected Security
    • nBOn
    • UBIQWeise 2.0
    • ESM
    • AiKno™
    • Cogmation
    • Avertle®
    • ARC
    • Chest-rAi™
  • Insights
    • Blogs
    • News
    • POV
    • eBooks
  • Explore LTTS
    • About Us
    • Nearshore Centers
    • Testimonials
    • Events & Webinars
    • News & Media
    • Board of Directors
    • CSR
    • Accolades
    • Alliances
    • Quality Management
    • Sustainability
  •  
  •  
  •  
  •  
  •  
^
  •  
  •  
  •  
  •  
  •  

© 2022 L&T Technology Services Limited. All Rights Reserved.

  • COPYRIGHT & TERMS
  • Privacy Policy
  • Site Map
  • info@LTTS.com