Skip to main content
LTTS

LTTS

Quick Links mini

  • Search
  • info@LTTS.com
  • English
  • 日本語
  • Israel
  • German
  • Contact
  • Engineering the change
  • Industry
    • Transportation
      • Aerospace
      • Automotive
      • Rail Transportation
      • Travel & Hospitality
      • Trucks & Off-Highway Vehicles
    • Industrial Products
      • Building Solutions
      • Lighting Engineering
      • Power electronics & drives
      • Renewable Energy
      • Test & Measurement
      • Power Generation & Transmission
    • Plant Engineering
      • CAPEX Project E/EPCM Services
      • Digital Engineering Services
      • Engineering Reapplication & Global Rollouts
      • Integrated Asset Management Services
      • Operational excellence
      • Plant sustenance & management
      • Regulatory compliance engineering
    • Semiconductors
      • IP Core Solutions
    • Media & Entertainment
      • Cable & Broadcasting
      • OTT
      • Rdk
      • Set-Top Boxes
      • Smart Home
    • Consumer Electronics
      • Consumer IoT
      • Enterprise Devices
      • Personal Devices
    • Healthcare
      • Healthcare Providers
      • Medical Devices
    • Telecommunications
      • 5G
      • SDN/NFV
      • Wireless Networks
      • Wireline Networks
    • Oil & Gas
      • Digitalization
      • Oil Field Equipment
      • Owners and Operators
    • Software Products
  • Services
    • Product Engineering
      • User Experience
      • Mechanical Design
        • CAE & CFD
        • CAx Automation
        • Integrated Design, Validation & Testing
      • Security
        • Security Monitoring
        • Security Solutions
        • Security Services
      • Software
        • Cloud Engineering
        • DevOps
        • Engineering Analytics
        • Immersive Experiences
        • Voice Innovations
      • Hardware
        • Embedded Systems
        • Wearables Engineering
        • Testing
        • Sustenance
      • VLSI
      • Testing & Validation
    • Manufacturing Engineering
      • PLM on Cloud
      • aspenONE on Cloud
      • Plant Design & Engineering
      • Digital Factory & Simulations
      • Line Expansion & Transfer
      • Frugal Product Design
      • Asset Care
      • Accelerated Operations
      • Manufacturing Automation
      • Agile Supply Chain
      • Content Engineering
    • Operations Engineering
      • Connected Service Support
      • Integrated Content Management
      • Intelligent Building Management
      • Sourcing & Procurement
    • Engineering Consultancy
      • Industry 4.0
      • Product Strategy
      • Security
      • Smart Factory
      • Sustainability
  • Solutions
    • FlyBoard®Advanced Digital Signage Solution
    • Connected Security Integrative Zero Trust Architecture
    • ESM Energy and Sustainability Manager
    • Cogmation Device Test Automation Framework
    • i-BEMSIntelligent Building Experience Management
    • UBIQWeise 2.0 Device to Cloud IoT Platform
    • AiKno™ Machine Learning, NLP & Vision Computing
    • Semiconductor IP For Security, Communication & Verification
    • nBOnnB-IoT Protocol Stack
    • Avertle®AI Predictive Maintenance Solution
    • ARC Asset Reliability Centre
    • CHEST-rAi™ AI Chest X-Ray Radiology Assist Suite
    • AnnotAi
    • AiCEArtificial Intelligence Clinical Evaluation
  • Insights
    • Blogs
      • 6 DevOps Trends to Watch Out for in 2023
      • A Validation Overview of ECU Communication Protocols in Automotive Audio Management
      • QOE Testing Paradigms for Media Streaming Platforms: Is Automation Your Answer
      • SIMD/SAMD: Everything You Need to Know
    • News
      • L&T Technology Services reports 21% growth and crosses the ₹300 crore mark in Net Profit in Q3FY23
      • LTTS Selected as Strategic Engineering Partner to Airbus for Advanced Capabilities and Digital Manufacturing Services
      • LTTS agrees to acquire Smart World & Communication business of L&T
      • Top global enterprises and engineers named winners of the inaugural Digital Engineering Awards
    • POV
      • Hidden Correlations Shaping the Future of European Enterprises
      • From the Super Bowl to 5G
      • Vehicle-to-Everything (V2X) Enabling Smarter, Safer, and Greener Transportation
      • Will 5G Technologies Drive a New Future for Media & Entertainment?
    • eBooks
      • The Art of Cyberwar
      • Digital Twin - The Future of Manufacturing
      • Digitalising Wind Energy Ecosystem
      • INDUSTRY 4.0: The Future Is Now
      • Digital Engineering Explained
      • Sustainability Engineering
  • Explore LTTS
    • About Us
    • Nearshore Centers
    • Testimonials
    • Events & Webinars
    • News & Media
    • Board of Directors
    • CSR
    • Accolades
    • Quality Management
    • Analysts
    • Careers
    • Investors
    • Media Kit
    • Resources
    • Alliances
    • Sustainability
  • Contact
 

Industrial Products

Hybrid AI System for Sensor Networks

 

Artificial Intelligence

Hybrid AI System for Sensor Networks

  1. Home
  2. Blogs
  3. Industry
  4. Hybrid AI System for Sensor Networks

Hybrid AI System for Sensor Networks

Hybrid AI System for Sensor Networks
Published on: 25 May, 2018
0 Views
1 comments
Share This Article:
  • Twitter
  • Facebook
  • Linked in
AI
Artificial Intelligence
CAD Model Interpreter
Case-based Systems
Fuzzy systems
Hybrid AI System
Hybrid System
Neuro-fuzzy System
Robot Program Generator
Rule-based Systems
Sensor
Sensor Network
Sensor Networks
Sensors
Weld Programming

Combining different systems

The purpose of a hybrid system is to combine the desirable elements of different AI techniques into one system. Each different method of implementing AI has its own strengths and weaknesses. Some effort has been made in combining different methods to produce hybrid techniques with more strengths and fewer weaknesses. An example is the neuro-fuzzy system, which seeks to combine the uncertainty handling of fuzzy systems with the learning strength of artificial neural networks.

A solution to the problems associated with weld programming is being addressed in this way. An existing system consists of two software systems working in series to construct viable robot programs. The first system, the CAD model interpreter, accepts a CAD model and determines the welds required. This data is fed to the program generator, which re-orientates the weld requirements in line with the actual real-world orientation of the panel. The program generator then sends any programs sequentially to the robot (normally one program per weld line). Additional software systems could be incorporated into the existing system at the point where the robot programs are sent to the robot system. This is because the transmission protocol at this point is standard TCP/IP [transmission control protocol/Internet protocol] and any programs to be sent can be viewed as text files.

A new proposed system (shown in Figure 1) will gather that data from an image sensor. The visual data and CAD model data will be used in conjunction to determine an object list, and that object list will be passed to a weld identifier module that will use AI techniques to determine weld requirement.

The proposed system uses a combination of AI techniques working in parallel to suggest weld requirements. These suggestions are then evaluated and decisions made regarding the weld required. These parameters are then sent to a new program generator, which produces a custom robot program for use on the shop floor. Image capture methods are being combined with a decision-making system that uses multiple AI techniques to decide on weld requirements for a job.

The system will combine real-world visual sensor data with data provided by the CAD model. It will then use this combined data to present differing AI systems with the same information. These systems will then make weld requirement suggestions to a weld identifier module (Figure 2). This module will evaluate the suggestions and determine the optimum weld path. The suggestions will then be passed to the existing robot program generator.

The robot program generation systems have been created, tested, and used to produce consistent straight line welds. A simple edge detection system has been created. Work surrounding the AI systems is in the early stages and will be advanced. The multi-intelligent decision module framework will be further developed and combinations of AI techniques tested. The AI techniques to be tested will include rule-based, case-based, and fuzzy systems. Any created system needs to be able to handle the uncertainty of unidentified objects within the image; however, when all objects are positively identified there should be little doubt as to the weld path.

Another example of combining different artificial intelligence tools is the fuzzy network. The nodes of this type of network are fuzzy rule bases and the connections between the nodes are interactions in the form of outputs from nodes that are fed as inputs to the same or other nodes. The fuzzy network is a hybrid tool combining fuzzy systems and neural networks due to its underlying grid structure with horizontal levels and vertical layers. This tool is quite suitable for modeling the assembly automation process because the separate assembly stages can be described as modular fuzzy rule bases interacting in sequential/parallel fashion and feedforward/feedback context.

The main advantages from the application of this hybrid modeling tool are better accuracy due to the single fuzzification-inference-de-fuzzification and higher transparency due to the modular approach used. These advantages are quite crucial bearing in mind the uncertainties in the data and the interconnected structure of some sensor systems.

Mix of sensor and logic systems

Researchers are mixing sensor systems and some powerful new technologies, and the longer use is yielding better results. Over time, results include less use of energy, space, and time, along with more output for less cost. Machines read in data from real objects and lay-down successive layers to build up a model of the object from a series of cross sections. AI is becoming important everywhere in reducing costs and time.

AI can increase effective communication, reduce mistakes, minimize errors, and extend sensor life

Over the past 40 years, artificial intelligence has produced a number of powerful tools, including those reviewed here: knowledge-based systems, fuzzy logic, automatic learning, neural networks, ambient intelligence, and genetic algorithms. Applications of these tools in sensor systems have become more widespread due to the power and affordability of present-day computers. Many new sensor systems applications may emerge, and greater use may be made of hybrid tools that combine the strengths of two or more of the tools mentioned. Other technological developments in AI that will impact sensor systems include data mining, multi-agent systems, and distributed self-organizing systems. The appropriate deployment of the new AI tools will contribute to the creation of more competitive sensor systems.

It may take another decade for engineers to recognize the benefits given the current lack of familiarity and the technical barriers associated with using these tools, but this field of study is expanding.

The tools and methods described have minimal computation complexity and can be implemented on small assembly lines, single robots, or systems with low-capability microcontrollers. These novel approaches proposed use ambient intelligence and the mixing of different AI tools in an effort to use the best of each technology.

Authors

L&T Technology Services’ Industrial Products Division
L&T Technology Services’ Industrial Products Division

Related Blogs

Dr. Keshab Panda
Accelerating Technology Advancements with the 4Es Framework
20 Apr, 2018
L&T Technology Services’ Industrial Products Division
Seven AI Tools that can aid Sensor Systems
21 May, 2018
Gururaja Bhatt
To Look Life in the Face: Deep Learning and AI’s Impact on the Life Sciences Industry
02 Jun, 2017
Leave a Comment
About text formats

Comments

 

User

Thanks for the article post. Really, thank you! Great.
  • Reply
Sun, 05/27/2018 - 20:34
View More Comments
View Less Comments
×Explore
  • Industry
  • Spotlight
  • ×
  • Automotive
  • Consumer Electronics
  • Industrial Engineering
  • Lighting & Building Solutions
  • Media & Entertainment
  • Medical Devices
  • Oil & Gas
  • Plant Engineering
  • Power Electronics
  • Renewable Energy
  • Semiconductors
  • Industrial Products
  • Transportation
  • Telecommunications
  • 5G
  • Cloud engineering
  • Cyber security
  • Embedded systems
  • Industry 4.0
  • Smart Manufacturing
  • Smart Products
  • Sustainability
  • Artificial Intelligence
  • AR/VR
  • Image Processing
  • Connected Healthcare
  • Smart Factory
  • Digital Twins
  • Building Automation
  • Autonomous Transport
  • Robotics
  • Digital Entertainment
  • Machine Learning
  • UI/UX
  • Manufacturing Automation
  • Smart Sourcing
  • Simulation
  • Software Defined Networking
  • Telehealth
  • Wearables
  • Design Thinking
  • IoT Security
  • ER&D Hackathon 2019
  • Digital Media
  • The New Normal
  • Data Mesh
  • Media
  • parent-company-logo.png
  • Need Help
  • Contact Us
  •  

Contact Us

By clicking Submit, you agree to the Privacy Policy

  • Engineering the change
  • Industry
    • Transportation
    • Industrial Products
    • Plant Engineering
    • Semiconductors
    • Media & Entertainment
    • Consumer Electronics
    • Healthcare
    • Telecommunications
    • Oil & Gas
    • Software Products
  • Services
    • Products
      • CAE & CFD
      • CAx Automation
      • Cloud Engineering
      • DevOps
      • Embedded Systems
      • Engineering Analytics
      • Immersive Experiences
      • Integrated Design, Validation & Testing
      • Security Monitoring
      • Security Solutions
      • Security Services
      • Sustenance
      • Testing
      • Testing & Validation
      • User Experience
      • VLSI
      • Voice Innovations
      • Wearables Engineering
    • Manufacturing
      • PLM on Cloud
      • aspenONE on Cloud
      • Plant Design & Engineering
      • Digital Factory & Simulations
      • Line Expansion & Transfer
      • Frugal Product Design
      • Asset Care
      • Accelerated Operations
      • Manufacturing Automation
      • Agile Supply Chain
      • Content Engineering
    • Operations
      • Connected Service Support
      • Integrated Content Management
      • Intelligent Building Management
      • Sourcing & Procurement
    • Consultancy
      • Industry 4.0
      • Product Strategy
      • Security
      • Smart Factory
      • Sustainability
  • Solutions
    • i-BEMS
    • Connected Security
    • nBOn
    • UBIQWeise 2.0
    • ESM
    • AiKno™
    • Cogmation
    • Avertle®
    • ARC
    • Chest-rAi™
    • AiCE
  • Insights
    • Blogs
    • News
    • POV
    • eBooks
  • Explore LTTS
    • About Us
    • Nearshore Centers
    • Testimonials
    • Events & Webinars
    • News & Media
    • Board of Directors
    • CSR
    • Accolades
    • Alliances
    • Quality Management
    • Sustainability
  •  
  •  
  •  
  •  
  •  
^
  •  
  •  
  •  
  •  
  •  

© 2023 L&T Technology Services Limited. All Rights Reserved.

  • COPYRIGHT & TERMS
  • PRIVACY
  • Site Map
  • info@LTTS.com